Move curve point arithmetic into their own modules

This commit is contained in:
Miguel Oliveira 2022-03-30 21:17:33 -03:00
parent 4491ac4029
commit 9a5f8b37ea
No known key found for this signature in database
GPG key ID: 2C2BE789E1377025
4 changed files with 351 additions and 307 deletions

View file

@ -4,231 +4,11 @@
--
local expect = require "cc.expect".expect
local fp = require "ccryptolib.internal.fp"
local fq = require "ccryptolib.internal.fq"
local sha512 = require "ccryptolib.internal.sha512"
local ed = require "ccryptolib.internal.edwards25519"
local random = require "ccryptolib.random"
local unpack = unpack or table.unpack
local D = fp.mul(fp.num(-121665), fp.invert(fp.num(121666)))
local K = fp.kmul(D, 2)
local O = {fp.num(0), fp.num(1), fp.num(1), fp.num(0)}
local G = nil
local function double(P1)
-- Unsoundness: fp.sub(g, e), and fp.sub(d, i) break fp.sub's contract since
-- it doesn't accept an fp2. Although not ideal, in practice this doesn't
-- matter since fp.carry handles the larger sum.
local P1x, P1y, P1z = unpack(P1)
local a = fp.square(P1x)
local b = fp.square(P1y)
local c = fp.square(P1z)
local d = fp.add(c, c)
local e = fp.add(a, b)
local f = fp.add(P1x, P1y)
local g = fp.square(f)
local h = fp.carry(fp.sub(g, e))
local i = fp.sub(b, a)
local j = fp.carry(fp.sub(d, i))
local P3x = fp.mul(h, j)
local P3y = fp.mul(i, e)
local P3z = fp.mul(j, i)
local P3t = fp.mul(h, e)
return {P3x, P3y, P3z, P3t}
end
local function add(P1, N1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N1p, N1m, N1z, N1t = unpack(N1)
local a = fp.sub(P1y, P1x)
local b = fp.mul(a, N1m)
local c = fp.add(P1y, P1x)
local d = fp.mul(c, N1p)
local e = fp.mul(P1t, N1t)
local f = fp.mul(P1z, N1z)
local g = fp.sub(d, b)
local h = fp.sub(f, e)
local i = fp.add(f, e)
local j = fp.add(d, b)
local P3x = fp.mul(g, h)
local P3y = fp.mul(i, j)
local P3z = fp.mul(h, i)
local P3t = fp.mul(g, j)
return {P3x, P3y, P3z, P3t}
end
local function sub(P1, N1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N1p, N1m, N1z, N1t = unpack(N1)
local a = fp.sub(P1y, P1x)
local b = fp.mul(a, N1p)
local c = fp.add(P1y, P1x)
local d = fp.mul(c, N1m)
local e = fp.mul(P1t, N1t)
local f = fp.mul(P1z, N1z)
local g = fp.sub(d, b)
local h = fp.add(f, e)
local i = fp.sub(f, e)
local j = fp.add(d, b)
local P3x = fp.mul(g, h)
local P3y = fp.mul(i, j)
local P3z = fp.mul(h, i)
local P3t = fp.mul(g, j)
return {P3x, P3y, P3z, P3t}
end
local function niels(P1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N3p = fp.add(P1y, P1x)
local N3m = fp.sub(P1y, P1x)
local N3z = fp.add(P1z, P1z)
local N3t = fp.mul(P1t, K)
return {N3p, N3m, N3z, N3t}
end
local function scale(P1)
local P1x, P1y, P1z = unpack(P1)
local zInv = fp.invert(P1z)
local P3x = fp.mul(P1x, zInv)
local P3y = fp.mul(P1y, zInv)
local P3z = fp.num(1)
local P3t = fp.mul(P3x, P3y)
return {P3x, P3y, P3z, P3t}
end
local function encode(P1)
local P1x, P1y = unpack(P1)
local y = fp.encode(P1y)
local xBit = fp.canonicalize(P1x)[1] % 2
return y:sub(1, -2) .. string.char(y:byte(-1) + xBit * 128)
end
local function decode(str)
local P3y = fp.decode(str)
local a = fp.square(P3y)
local b = fp.sub(a, fp.num(1))
local c = fp.mul(a, D)
local d = fp.add(c, fp.num(1))
local P3x = fp.sqrtDiv(b, d)
if not P3x then return nil end
local xBit = fp.canonicalize(P3x)[1] % 2
if xBit ~= bit32.extract(str:byte(-1), 7) then
P3x = fp.carry(fp.sub(fp.P, P3x))
end
local P3z = fp.num(1)
local P3t = fp.mul(P3x, P3y)
return {P3x, P3y, P3z, P3t}
end
G = decode("Xfffffffffffffffffffffffffffffff")
local function signedRadixW(bits, w)
-- TODO Find a more elegant way of doing this.
local wPow = 2 ^ w
local wPowh = wPow / 2
local out = {}
local acc = 0
local mul = 1
for i = 1, #bits do
acc = acc + bits[i] * mul
mul = mul * 2
while i == #bits and acc > 0 or mul > wPow do
local rem = acc % wPow
if rem >= wPowh then rem = rem - wPow end
acc = (acc - rem) / wPow
mul = mul / wPow
out[#out + 1] = rem
end
end
return out
end
local function radixWTable(P, w)
local out = {}
for i = 1, 255 / w do
local row = {niels(P)}
for j = 2, 2 ^ w / 2 do
P = add(P, row[1])
row[j] = niels(P)
end
out[i] = row
P = double(P)
end
return out
end
local G_W = 5
local G_TABLE = radixWTable(G, G_W)
local function WNAF(bits, w)
-- TODO Find a more elegant way of doing this.
local wPow = 2 ^ w
local wPowh = wPow / 2
local out = {}
local acc = 0
local mul = 1
for i = 1, #bits do
acc = acc + bits[i] * mul
mul = mul * 2
while i == #bits and acc > 0 or mul > wPow do
if acc % 2 == 0 then
acc = acc / 2
mul = mul / 2
out[#out + 1] = 0
else
local rem = acc % wPow
if rem >= wPowh then rem = rem - wPow end
acc = acc - rem
out[#out + 1] = rem
end
end
end
while out[#out] == 0 do out[#out] = nil end
return out
end
local function WNAFTable(P, w)
local dP = double(P)
local out = {niels(P)}
for i = 3, 2 ^ w, 2 do
out[i] = niels(add(dP, out[i - 2]))
end
return out
end
local function mulG(bits)
local sw = signedRadixW(bits, G_W)
local R = O
for i = 1, #sw do
local b = sw[i]
if b > 0 then
R = add(R, G_TABLE[i][b])
elseif b < 0 then
R = sub(R, G_TABLE[i][-b])
end
end
return R
end
local function mul(P, bits)
local naf = WNAF(bits, 5)
local tbl = WNAFTable(P, 5)
local R = O
for i = #naf, 1, -1 do
local b = naf[i]
if b == 0 then
R = double(R)
elseif b > 0 then
R = add(R, tbl[b])
else
R = sub(R, tbl[-b])
end
end
return R
end
local mod = {}
--- Computes a public key from a secret key.
@ -243,7 +23,7 @@ function mod.publicKey(sk)
local h = sha512.digest(sk)
local x = fq.decodeClamped(h:sub(1, 32))
return encode(scale(mulG(fq.bits(x))))
return ed.encode(ed.scale(ed.mulG(fq.bits(x))))
end
--- Signs a message.
@ -266,8 +46,8 @@ function mod.sign(sk, pk, msg)
-- Commitment.
local k = fq.decodeWide(random.random(64))
local r = mulG(fq.bits(k))
local rStr = encode(scale(r))
local r = ed.mulG(fq.bits(k))
local rStr = ed.encode(ed.scale(r))
-- Challenge.
local e = fq.decodeWide(sha512.digest(rStr .. pk .. msg))
@ -294,7 +74,7 @@ function mod.verify(pk, msg, sig)
expect(3, sig, "string")
assert(#sig == 64, "signature length must be 64")
local y = decode(pk)
local y = ed.decode(pk)
if not y then return nil end
local rStr = sig:sub(1, 32)
@ -302,11 +82,11 @@ function mod.verify(pk, msg, sig)
local e = fq.decodeWide(sha512.digest(rStr .. pk .. msg))
local gs = mulG(fq.bits(fq.decode(sStr)))
local ye = mul(y, fq.bits(e))
local rv = add(gs, niels(ye))
local gs = ed.mulG(fq.bits(fq.decode(sStr)))
local ye = ed.mul(y, fq.bits(e))
local rv = ed.add(gs, ed.niels(ye))
return encode(scale(rv)) == rStr
return ed.encode(ed.scale(rv)) == rStr
end
return mod

95
internal/curve25519.lua Normal file
View file

@ -0,0 +1,95 @@
--- Point arithmetic on the Curve25519 Montgomery curve.
--
-- :::note Internal Module
-- This module is meant for internal use within the library. Its API is unstable
-- and subject to change without major version bumps.
-- :::
--
-- <br />
--
-- @module[kind=internal] internal.curve25519
--
local fp = require "ccryptolib.internal.fp"
local random = require "ccryptolib.random"
local unpack = unpack or table.unpack
local function double(x1, z1)
local a = fp.add(x1, z1)
local aa = fp.square(a)
local b = fp.sub(x1, z1)
local bb = fp.square(b)
local c = fp.sub(aa, bb)
local x3 = fp.mul(aa, bb)
local z3 = fp.mul(c, fp.add(bb, fp.kmul(c, 121666)))
return x3, z3
end
local function step(dxmul, dx, x1, z1, x2, z2)
local a = fp.add(x1, z1)
local aa = fp.square(a)
local b = fp.sub(x1, z1)
local bb = fp.square(b)
local e = fp.sub(aa, bb)
local c = fp.add(x2, z2)
local d = fp.sub(x2, z2)
local da = fp.mul(d, a)
local cb = fp.mul(c, b)
local x4 = fp.square(fp.add(da, cb))
local z4 = dxmul(fp.square(fp.sub(da, cb)), dx)
local x3 = fp.mul(aa, bb)
local z3 = fp.mul(e, fp.add(bb, fp.kmul(e, 121666)))
return x3, z3, x4, z4
end
local function bits(str)
-- Decode.
local bytes = {str:byte(1, 32)}
local out = {}
for i = 1, 32 do
local byte = bytes[i]
for j = -7, 0 do
local bit = byte % 2
out[8 * i + j] = bit
byte = (byte - bit) / 2
end
end
-- Clamp.
out[256] = 0
out[255] = 1
-- We remove the 3 lowest bits since the ladder already multiplies by 8.
return {unpack(out, 4)}
end
local function ladder8(dxmul, dx, bits)
local x1 = fp.num(1)
local z1 = fp.num(0)
local z2 = fp.decode(random.random(32))
local x2 = dxmul(z2, dx)
-- Standard ladder.
for i = #bits, 1, -1 do
if bits[i] == 0 then
x1, z1, x2, z2 = step(dxmul, dx, x1, z1, x2, z2)
else
x2, z2, x1, z1 = step(dxmul, dx, x2, z2, x1, z1)
end
end
-- Multiply by 8 (double 3 times).
for _ = 1, 3 do
x1, z1 = double(x1, z1)
end
return fp.mul(x1, fp.invert(z1))
end
return {
double = double,
bits = bits,
ladder8 = ladder8,
}

244
internal/edwards25519.lua Normal file
View file

@ -0,0 +1,244 @@
--- Point arithmetic on the Edwards25519 Edwards curve.
--
-- :::note Internal Module
-- This module is meant for internal use within the library. Its API is unstable
-- and subject to change without major version bumps.
-- :::
--
-- <br />
--
-- @module[kind=internal] internal.edwards25519
--
local fp = require "ccryptolib.internal.fp"
local unpack = unpack or table.unpack
local D = fp.mul(fp.num(-121665), fp.invert(fp.num(121666)))
local K = fp.kmul(D, 2)
local O = {fp.num(0), fp.num(1), fp.num(1), fp.num(0)}
local G = nil
local function double(P1)
-- Unsoundness: fp.sub(g, e), and fp.sub(d, i) break fp.sub's contract since
-- it doesn't accept an fp2. Although not ideal, in practice this doesn't
-- matter since fp.carry handles the larger sum.
local P1x, P1y, P1z = unpack(P1)
local a = fp.square(P1x)
local b = fp.square(P1y)
local c = fp.square(P1z)
local d = fp.add(c, c)
local e = fp.add(a, b)
local f = fp.add(P1x, P1y)
local g = fp.square(f)
local h = fp.carry(fp.sub(g, e))
local i = fp.sub(b, a)
local j = fp.carry(fp.sub(d, i))
local P3x = fp.mul(h, j)
local P3y = fp.mul(i, e)
local P3z = fp.mul(j, i)
local P3t = fp.mul(h, e)
return {P3x, P3y, P3z, P3t}
end
local function add(P1, N1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N1p, N1m, N1z, N1t = unpack(N1)
local a = fp.sub(P1y, P1x)
local b = fp.mul(a, N1m)
local c = fp.add(P1y, P1x)
local d = fp.mul(c, N1p)
local e = fp.mul(P1t, N1t)
local f = fp.mul(P1z, N1z)
local g = fp.sub(d, b)
local h = fp.sub(f, e)
local i = fp.add(f, e)
local j = fp.add(d, b)
local P3x = fp.mul(g, h)
local P3y = fp.mul(i, j)
local P3z = fp.mul(h, i)
local P3t = fp.mul(g, j)
return {P3x, P3y, P3z, P3t}
end
local function sub(P1, N1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N1p, N1m, N1z, N1t = unpack(N1)
local a = fp.sub(P1y, P1x)
local b = fp.mul(a, N1p)
local c = fp.add(P1y, P1x)
local d = fp.mul(c, N1m)
local e = fp.mul(P1t, N1t)
local f = fp.mul(P1z, N1z)
local g = fp.sub(d, b)
local h = fp.add(f, e)
local i = fp.sub(f, e)
local j = fp.add(d, b)
local P3x = fp.mul(g, h)
local P3y = fp.mul(i, j)
local P3z = fp.mul(h, i)
local P3t = fp.mul(g, j)
return {P3x, P3y, P3z, P3t}
end
local function niels(P1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N3p = fp.add(P1y, P1x)
local N3m = fp.sub(P1y, P1x)
local N3z = fp.add(P1z, P1z)
local N3t = fp.mul(P1t, K)
return {N3p, N3m, N3z, N3t}
end
local function scale(P1)
local P1x, P1y, P1z = unpack(P1)
local zInv = fp.invert(P1z)
local P3x = fp.mul(P1x, zInv)
local P3y = fp.mul(P1y, zInv)
local P3z = fp.num(1)
local P3t = fp.mul(P3x, P3y)
return {P3x, P3y, P3z, P3t}
end
local function encode(P1)
local P1x, P1y = unpack(P1)
local y = fp.encode(P1y)
local xBit = fp.canonicalize(P1x)[1] % 2
return y:sub(1, -2) .. string.char(y:byte(-1) + xBit * 128)
end
local function decode(str)
local P3y = fp.decode(str)
local a = fp.square(P3y)
local b = fp.sub(a, fp.num(1))
local c = fp.mul(a, D)
local d = fp.add(c, fp.num(1))
local P3x = fp.sqrtDiv(b, d)
if not P3x then return nil end
local xBit = fp.canonicalize(P3x)[1] % 2
if xBit ~= bit32.extract(str:byte(-1), 7) then
P3x = fp.carry(fp.sub(fp.P, P3x))
end
local P3z = fp.num(1)
local P3t = fp.mul(P3x, P3y)
return {P3x, P3y, P3z, P3t}
end
G = decode("Xfffffffffffffffffffffffffffffff")
local function signedRadixW(bits, w)
-- TODO Find a more elegant way of doing this.
local wPow = 2 ^ w
local wPowh = wPow / 2
local out = {}
local acc = 0
local mul = 1
for i = 1, #bits do
acc = acc + bits[i] * mul
mul = mul * 2
while i == #bits and acc > 0 or mul > wPow do
local rem = acc % wPow
if rem >= wPowh then rem = rem - wPow end
acc = (acc - rem) / wPow
mul = mul / wPow
out[#out + 1] = rem
end
end
return out
end
local function radixWTable(P, w)
local out = {}
for i = 1, 255 / w do
local row = {niels(P)}
for j = 2, 2 ^ w / 2 do
P = add(P, row[1])
row[j] = niels(P)
end
out[i] = row
P = double(P)
end
return out
end
local G_W = 5
local G_TABLE = radixWTable(G, G_W)
local function WNAF(bits, w)
-- TODO Find a more elegant way of doing this.
local wPow = 2 ^ w
local wPowh = wPow / 2
local out = {}
local acc = 0
local mul = 1
for i = 1, #bits do
acc = acc + bits[i] * mul
mul = mul * 2
while i == #bits and acc > 0 or mul > wPow do
if acc % 2 == 0 then
acc = acc / 2
mul = mul / 2
out[#out + 1] = 0
else
local rem = acc % wPow
if rem >= wPowh then rem = rem - wPow end
acc = acc - rem
out[#out + 1] = rem
end
end
end
while out[#out] == 0 do out[#out] = nil end
return out
end
local function WNAFTable(P, w)
local dP = double(P)
local out = {niels(P)}
for i = 3, 2 ^ w, 2 do
out[i] = niels(add(dP, out[i - 2]))
end
return out
end
local function mulG(bits)
local sw = signedRadixW(bits, G_W)
local R = O
for i = 1, #sw do
local b = sw[i]
if b > 0 then
R = add(R, G_TABLE[i][b])
elseif b < 0 then
R = sub(R, G_TABLE[i][-b])
end
end
return R
end
local function mul(P, bits)
local naf = WNAF(bits, 5)
local tbl = WNAFTable(P, 5)
local R = O
for i = #naf, 1, -1 do
local b = naf[i]
if b == 0 then
R = double(R)
elseif b > 0 then
R = add(R, tbl[b])
else
R = sub(R, tbl[-b])
end
end
return R
end
return {
double = double,
add = add,
niels = niels,
scale = scale,
encode = encode,
decode = decode,
mulG = mulG,
mul = mul,
}

View file

@ -5,82 +5,7 @@
local expect = require "cc.expect".expect
local fp = require "ccryptolib.internal.fp"
local random = require "ccryptolib.random"
local unpack = unpack or table.unpack
local function double(x1, z1)
local a = fp.add(x1, z1)
local aa = fp.square(a)
local b = fp.sub(x1, z1)
local bb = fp.square(b)
local c = fp.sub(aa, bb)
local x3 = fp.mul(aa, bb)
local z3 = fp.mul(c, fp.add(bb, fp.kmul(c, 121666)))
return x3, z3
end
local function step(dxmul, dx, x1, z1, x2, z2)
local a = fp.add(x1, z1)
local aa = fp.square(a)
local b = fp.sub(x1, z1)
local bb = fp.square(b)
local e = fp.sub(aa, bb)
local c = fp.add(x2, z2)
local d = fp.sub(x2, z2)
local da = fp.mul(d, a)
local cb = fp.mul(c, b)
local x4 = fp.square(fp.add(da, cb))
local z4 = dxmul(fp.square(fp.sub(da, cb)), dx)
local x3 = fp.mul(aa, bb)
local z3 = fp.mul(e, fp.add(bb, fp.kmul(e, 121666)))
return x3, z3, x4, z4
end
local function bits(str)
-- Decode.
local bytes = {str:byte(1, 32)}
local out = {}
for i = 1, 32 do
local byte = bytes[i]
for j = -7, 0 do
local bit = byte % 2
out[8 * i + j] = bit
byte = (byte - bit) / 2
end
end
-- Clamp.
out[256] = 0
out[255] = 1
-- We remove the 3 lowest bits since the ladder already multiplies by 8.
return {unpack(out, 4)}
end
local function ladder8(dxmul, dx, bits)
local x1 = fp.num(1)
local z1 = fp.num(0)
local z2 = fp.decode(random.random(32))
local x2 = dxmul(z2, dx)
-- Standard ladder.
for i = #bits, 1, -1 do
if bits[i] == 0 then
x1, z1, x2, z2 = step(dxmul, dx, x1, z1, x2, z2)
else
x2, z2, x1, z1 = step(dxmul, dx, x2, z2, x1, z1)
end
end
-- Multiply by 8 (double 3 times).
for _ = 1, 3 do
x1, z1 = double(x1, z1)
end
return fp.mul(x1, fp.invert(z1))
end
local mont = require "ccryptolib.internal.curve25519"
local mod = {}
@ -92,7 +17,7 @@ local mod = {}
function mod.publicKey(sk)
expect(1, sk, "string")
assert(#sk == 32, "secret key length must be 32")
return fp.encode(ladder8(fp.kmul, 9, bits(sk)))
return fp.encode(mont.ladder8(fp.kmul, 9, mont.bits(sk)))
end
--- Performs the key exchange.
@ -106,7 +31,7 @@ function mod.exchange(sk, pk)
assert(#sk == 32, "secret key length must be 32")
expect(2, pk, "string")
assert(#pk == 32, "public key length must be 32")
return fp.encode(ladder8(fp.mul, fp.decode(pk), bits(sk)))
return fp.encode(mont.ladder8(fp.mul, fp.decode(pk), mont.bits(sk)))
end
return mod