From d06c4309cf97c6ac1aa4c43c6c3ea283a59f85f4 Mon Sep 17 00:00:00 2001 From: Miguel Oliveira Date: Wed, 2 Mar 2022 15:02:15 -0300 Subject: [PATCH] Rename X25519c secret key arguments --- x25519c.lua | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/x25519c.lua b/x25519c.lua index e5e5c64..2df6c46 100644 --- a/x25519c.lua +++ b/x25519c.lua @@ -97,22 +97,22 @@ function mod.secretKeyDecode(str) return out end -function mod.secretKeyRemask(sk) +function mod.secretKeyRemask(sks) local sum = fq.num(0) local out = {} for i = 1, ORDER - 1 do local element = fqRandom() - out[i] = fq.add(sk[i], element) + out[i] = fq.add(sks[i], element) sum = fq.add(sum, element) end - out[ORDER] = fq.add(sk[ORDER], fq.neg(sum)) + out[ORDER] = fq.add(sks[ORDER], fq.neg(sum)) return out end -function mod.exchange(sk, pk, mc) +function mod.exchange(sks, pk, mc) expect(2, pk, "string") assert(#pk == 32, "public key length must be 32") expect(3, mc, "string") @@ -124,7 +124,7 @@ function mod.exchange(sk, pk, mc) -- Multiply secret key members and add them together. -- This unwraps into the "true" secret key times the multiplier (mod q). local skmt = fq.num(0) - for i = 1, #sk do skmt = fq.add(skmt, fq.mul(sk[i], mc)) end + for i = 1, #sks do skmt = fq.add(skmt, fq.mul(sks[i], mc)) end -- Get bits. -- We have our exponent modulo q. We also know that its value is 0 modulo 8.