Rework ladders for X25519 and X25519c

This commit is contained in:
Miguel Oliveira 2022-03-02 14:58:16 -03:00
parent 501e81a36a
commit f605de3f0d
No known key found for this signature in database
GPG key ID: 2C2BE789E1377025
4 changed files with 93 additions and 46 deletions

View file

@ -1,5 +1,9 @@
local unpack = unpack or table.unpack
local function num(n)
return {n, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
end
local function add(a, b)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local b00, b01, b02, b03, b04, b05, b06, b07, b08, b09, b10, b11 = unpack(b)
@ -497,6 +501,7 @@ local function decode(b)
end
return {
num = num,
add = add,
sub = sub,
kmul = kmul,

View file

@ -2,6 +2,17 @@ local fp = require "ccryptolib.internal.fp"
local G = {9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
local function double(x1, z1)
local a = fp.add(x1, z1)
local aa = fp.square(a)
local b = fp.sub(x1, z1)
local bb = fp.square(b)
local c = fp.sub(aa, bb)
local x3 = fp.mul(aa, bb)
local z3 = fp.mul(c, fp.add(bb, fp.kmul(c, 121666)))
return x3, z3
end
local function step(dx, x1, z1, x2, z2)
local a = fp.add(x1, z1)
local aa = fp.square(a)
@ -19,48 +30,8 @@ local function step(dx, x1, z1, x2, z2)
return x3, z3, x4, z4
end
local function ladder(dx, bits)
local x1 = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
local z1 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
local x2, z2 = dx, x1
for i = #bits, 1, -1 do
if bits[i] == 0 then
x1, z1, x2, z2 = step(dx, x1, z1, x2, z2)
else
x2, z2, x1, z1 = step(dx, x2, z2, x1, z1)
end
end
return fp.mul(x1, fp.invert(z1))
end
local function bits(str)
-- Decode.
local bytes = {str:byte(1, 32)}
local out = {}
for i = 1, 32 do
local byte = bytes[i]
for j = -7, 0 do
local bit = byte % 2
out[8 * i + j] = bit
byte = (byte - bit) / 2
end
end
-- Clamp.
out[1] = 0
out[2] = 0
out[3] = 0
out[256] = 0
out[255] = 1
return out
end
return {
G = G,
double = double,
step = step,
ladder = ladder,
bits = bits,
}

View file

@ -2,13 +2,58 @@ local expect = require "cc.expect".expect
local fp = require "ccryptolib.internal.fp"
local x25519 = require "ccryptolib.internal.x25519"
local unpack = unpack or table.unpack
local function bits(str)
-- Decode.
local bytes = {str:byte(1, 32)}
local out = {}
for i = 1, 32 do
local byte = bytes[i]
for j = -7, 0 do
local bit = byte % 2
out[8 * i + j] = bit
byte = (byte - bit) / 2
end
end
-- Clamp.
out[256] = 0
out[255] = 1
-- We remove the 3 lowest bits since the ladder already multiplies by 8.
return {unpack(out, 4)}
end
local function ladder8(dx, bits)
local x1 = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
local z1 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
local x2, z2 = dx, x1
-- Standard ladder.
for i = #bits, 1, -1 do
if bits[i] == 0 then
x1, z1, x2, z2 = x25519.step(dx, x1, z1, x2, z2)
else
x2, z2, x1, z1 = x25519.step(dx, x2, z2, x1, z1)
end
end
-- Multiply by 8 (double 3 times).
for _ = 1, 3 do
x1, z1 = x25519.double(x1, z1)
end
return fp.mul(x1, fp.invert(z1))
end
local mod = {}
function mod.publicKey(sk)
expect(1, sk, "string")
assert(#sk == 32, "secret key length must be 32")
return fp.encode(x25519.ladder(x25519.G, x25519.bits(sk)))
return fp.encode(ladder8(x25519.G, bits(sk)))
end
function mod.exchange(sk, pk)
@ -17,7 +62,7 @@ function mod.exchange(sk, pk)
expect(2, pk, "string")
assert(#pk == 32, "public key length must be 32")
return fp.encode(x25519.ladder(fp.decode(pk), x25519.bits(sk)))
return fp.encode(ladder8(fp.decode(pk), bits(sk)))
end
return mod

View file

@ -37,6 +37,34 @@ local function fqDecodeStd(str)
return fq.montgomery(words)
end
local function ladder8(dx, bits)
local x1 = fp.num(1)
local z1 = fp.num(0)
-- Compute a randomization factor for randomized projective coordinates.
-- Biased but good enough.
local rf = fp.decode(random.random(32))
local x2 = fp.mul(rf, dx)
local z2 = rf
-- Standard ladder.
for i = #bits, 1, -1 do
if bits[i] == 0 then
x1, z1, x2, z2 = x25519.step(dx, x1, z1, x2, z2)
else
x2, z2, x1, z1 = x25519.step(dx, x2, z2, x1, z1)
end
end
-- Multiply by 8 (double 3 times).
for _ = 1, 3 do
x1, z1 = x25519.double(x1, z1)
end
return fp.mul(x1, fp.invert(z1))
end
local mod = {}
function mod.secretKeyInit(sk)
@ -102,10 +130,8 @@ function mod.exchange(sk, pk, mc)
-- We have our exponent modulo q. We also know that its value is 0 modulo 8.
-- Use the Chinese Remainder Theorem to find its value modulo 8q.
local bits = fq.bits(fq.mul(skmt, INV8Q))
local bits8 = {0, 0, 0}
for i = 1, 253 do bits8[i + 3] = bits[i] end
return fp.encode(x25519.ladder(fp.decode(pk), bits8))
return fp.encode(ladder8(fp.decode(pk), bits))
end
return mod