--- Arithmetic on Curve25519's base field.
--
-- :::note Internal Module
-- This module is meant for internal use within the library. Its API is unstable
-- and subject to change without major version bumps.
-- :::
--
--
--
-- @module[kind=internal] internal.fp
--
local unpack = unpack or table.unpack
--- The modular square root of -1.
local I = {
0958640 * 2 ^ 0,
0826664 * 2 ^ 22,
1613251 * 2 ^ 43,
1041528 * 2 ^ 64,
0013673 * 2 ^ 85,
0387171 * 2 ^ 107,
1824679 * 2 ^ 128,
0313839 * 2 ^ 149,
0709440 * 2 ^ 170,
0122635 * 2 ^ 192,
0262782 * 2 ^ 213,
0712905 * 2 ^ 234,
}
--- p itself, 2²⁵⁵ - 19.
local P = {
2 ^ 22 - 19,
(2 ^ 21 - 1) * 2 ^ 22,
(2 ^ 21 - 1) * 2 ^ 43,
(2 ^ 21 - 1) * 2 ^ 64,
(2 ^ 22 - 1) * 2 ^ 85,
(2 ^ 21 - 1) * 2 ^ 107,
(2 ^ 21 - 1) * 2 ^ 128,
(2 ^ 21 - 1) * 2 ^ 149,
(2 ^ 22 - 1) * 2 ^ 170,
(2 ^ 21 - 1) * 2 ^ 192,
(2 ^ 21 - 1) * 2 ^ 213,
(2 ^ 21 - 1) * 2 ^ 234,
}
--- Converts a Lua number to an element.
--
-- @tparam number n A number n in [0..2²²).
-- @treturn fp1
--
local function num(n)
return {n, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
end
--- Adds two elements.
--
-- @tparam fp1 a
-- @tparam fp1 b
-- @treturn fp2 a + b.
--
local function add(a, b)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local b00, b01, b02, b03, b04, b05, b06, b07, b08, b09, b10, b11 = unpack(b)
return {
a00 + b00,
a01 + b01,
a02 + b02,
a03 + b03,
a04 + b04,
a05 + b05,
a06 + b06,
a07 + b07,
a08 + b08,
a09 + b09,
a10 + b10,
a11 + b11,
}
end
--- Subtracts an element from another.
--
-- @tparam fp1 a
-- @tparam fp1 b
-- @treturn fp2 a - b.
--
local function sub(a, b)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local b00, b01, b02, b03, b04, b05, b06, b07, b08, b09, b10, b11 = unpack(b)
return {
a00 - b00,
a01 - b01,
a02 - b02,
a03 - b03,
a04 - b04,
a05 - b05,
a06 - b06,
a07 - b07,
a08 - b08,
a09 - b09,
a10 - b10,
a11 - b11,
}
end
--- Carries an element.
--
-- Also performs a small reduction modulo p.
--
-- @tparam fp2 a
-- @treturn fp1 a' ≡ a (mod p).
--
local function carry(a)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local c00, c01, c02, c03, c04, c05, c06, c07, c08, c09, c10, c11
c11 = a11 + 3 * 2 ^ 306 - 3 * 2 ^ 306 a00 = a00 + 19 / 2 ^ 255 * c11
c00 = a00 + 3 * 2 ^ 73 - 3 * 2 ^ 73 a01 = a01 + c00
c01 = a01 + 3 * 2 ^ 94 - 3 * 2 ^ 94 a02 = a02 + c01
c02 = a02 + 3 * 2 ^ 115 - 3 * 2 ^ 115 a03 = a03 + c02
c03 = a03 + 3 * 2 ^ 136 - 3 * 2 ^ 136 a04 = a04 + c03
c04 = a04 + 3 * 2 ^ 158 - 3 * 2 ^ 158 a05 = a05 + c04
c05 = a05 + 3 * 2 ^ 179 - 3 * 2 ^ 179 a06 = a06 + c05
c06 = a06 + 3 * 2 ^ 200 - 3 * 2 ^ 200 a07 = a07 + c06
c07 = a07 + 3 * 2 ^ 221 - 3 * 2 ^ 221 a08 = a08 + c07
c08 = a08 + 3 * 2 ^ 243 - 3 * 2 ^ 243 a09 = a09 + c08
c09 = a09 + 3 * 2 ^ 264 - 3 * 2 ^ 264 a10 = a10 + c09
c10 = a10 + 3 * 2 ^ 285 - 3 * 2 ^ 285 a11 = a11 - c11 + c10
c11 = a11 + 3 * 2 ^ 306 - 3 * 2 ^ 306
return {
a00 - c00 + 19 / 2 ^ 255 * c11,
a01 - c01,
a02 - c02,
a03 - c03,
a04 - c04,
a05 - c05,
a06 - c06,
a07 - c07,
a08 - c08,
a09 - c09,
a10 - c10,
a11 - c11,
}
end
--- Returns the canoncal representative of a modp number.
--
-- Some elements can be represented by two different arrays of floats. This
-- returns the canonical element of the represented equivalence class. We define
-- an element as canonical if it's the smallest nonnegative number in its class.
--
-- @tparam fp2 a
-- @treturn fp1 A canonical element a' ≡ a (mod p).
--
local function canonicalize(a)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local c00, c01, c02, c03, c04, c05, c06, c07, c08, c09, c10, c11
-- Perform an euclidean reduction.
-- TODO Range check.
c00 = a00 % 2 ^ 22 a01 = a00 - c00 + a01
c01 = a01 % 2 ^ 43 a02 = a01 - c01 + a02
c02 = a02 % 2 ^ 64 a03 = a02 - c02 + a03
c03 = a03 % 2 ^ 85 a04 = a03 - c03 + a04
c04 = a04 % 2 ^ 107 a05 = a04 - c04 + a05
c05 = a05 % 2 ^ 128 a06 = a05 - c05 + a06
c06 = a06 % 2 ^ 149 a07 = a06 - c06 + a07
c07 = a07 % 2 ^ 170 a08 = a07 - c07 + a08
c08 = a08 % 2 ^ 192 a09 = a08 - c08 + a09
c09 = a09 % 2 ^ 213 a10 = a09 - c09 + a10
c10 = a10 % 2 ^ 234 a11 = a10 - c10 + a11
c11 = a11 % 2 ^ 255 c00 = c00 + 19 / 2 ^ 255 * (a11 - c11)
-- Canonicalize.
if c11 / 2 ^ 234 == 2 ^ 21 - 1
and c10 / 2 ^ 213 == 2 ^ 21 - 1
and c09 / 2 ^ 192 == 2 ^ 21 - 1
and c08 / 2 ^ 170 == 2 ^ 22 - 1
and c07 / 2 ^ 149 == 2 ^ 21 - 1
and c06 / 2 ^ 128 == 2 ^ 21 - 1
and c05 / 2 ^ 107 == 2 ^ 21 - 1
and c04 / 2 ^ 85 == 2 ^ 22 - 1
and c03 / 2 ^ 64 == 2 ^ 21 - 1
and c02 / 2 ^ 43 == 2 ^ 21 - 1
and c01 / 2 ^ 22 == 2 ^ 21 - 1
and c00 >= 2 ^ 22 - 19
then
return {19 - 2 ^ 22 + c00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
else
return {c00, c01, c02, c03, c04, c05, c06, c07, c08, c09, c10, c11}
end
end
--- Returns whether two elements are the same.
--
-- @tparam fp1 a
-- @tparam fp1 b
-- @treturn boolean Whether the two elements are the same mod p.
--
local function eq(a, b)
local c = canonicalize(sub(a, b))
for i = 1, 12 do if c[i] ~= 0 then return false end end
return true
end
--- Multiplies two elements.
--
-- @tparam fp2 a
-- @tparam fp2 b
-- @treturn fp1 c ≡ a ✕ b (mod p).
--
local function mul(a, b)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local b00, b01, b02, b03, b04, b05, b06, b07, b08, b09, b10, b11 = unpack(b)
local c00, c01, c02, c03, c04, c05, c06, c07, c08, c09, c10, c11
-- Multiply high half into c00..c11.
c00 = a11 * b01
+ a10 * b02
+ a09 * b03
+ a08 * b04
+ a07 * b05
+ a06 * b06
+ a05 * b07
+ a04 * b08
+ a03 * b09
+ a02 * b10
+ a01 * b11
c01 = a11 * b02
+ a10 * b03
+ a09 * b04
+ a08 * b05
+ a07 * b06
+ a06 * b07
+ a05 * b08
+ a04 * b09
+ a03 * b10
+ a02 * b11
c02 = a11 * b03
+ a10 * b04
+ a09 * b05
+ a08 * b06
+ a07 * b07
+ a06 * b08
+ a05 * b09
+ a04 * b10
+ a03 * b11
c03 = a11 * b04
+ a10 * b05
+ a09 * b06
+ a08 * b07
+ a07 * b08
+ a06 * b09
+ a05 * b10
+ a04 * b11
c04 = a11 * b05
+ a10 * b06
+ a09 * b07
+ a08 * b08
+ a07 * b09
+ a06 * b10
+ a05 * b11
c05 = a11 * b06
+ a10 * b07
+ a09 * b08
+ a08 * b09
+ a07 * b10
+ a06 * b11
c06 = a11 * b07
+ a10 * b08
+ a09 * b09
+ a08 * b10
+ a07 * b11
c07 = a11 * b08
+ a10 * b09
+ a09 * b10
+ a08 * b11
c08 = a11 * b09
+ a10 * b10
+ a09 * b11
c09 = a11 * b10
+ a10 * b11
c10 = a11 * b11
-- Multiply low half with reduction into c00..c11.
c00 = c00 * (19 / 2 ^ 255)
+ a00 * b00
c01 = c01 * (19 / 2 ^ 255)
+ a01 * b00
+ a00 * b01
c02 = c02 * (19 / 2 ^ 255)
+ a02 * b00
+ a01 * b01
+ a00 * b02
c03 = c03 * (19 / 2 ^ 255)
+ a03 * b00
+ a02 * b01
+ a01 * b02
+ a00 * b03
c04 = c04 * (19 / 2 ^ 255)
+ a04 * b00
+ a03 * b01
+ a02 * b02
+ a01 * b03
+ a00 * b04
c05 = c05 * (19 / 2 ^ 255)
+ a05 * b00
+ a04 * b01
+ a03 * b02
+ a02 * b03
+ a01 * b04
+ a00 * b05
c06 = c06 * (19 / 2 ^ 255)
+ a06 * b00
+ a05 * b01
+ a04 * b02
+ a03 * b03
+ a02 * b04
+ a01 * b05
+ a00 * b06
c07 = c07 * (19 / 2 ^ 255)
+ a07 * b00
+ a06 * b01
+ a05 * b02
+ a04 * b03
+ a03 * b04
+ a02 * b05
+ a01 * b06
+ a00 * b07
c08 = c08 * (19 / 2 ^ 255)
+ a08 * b00
+ a07 * b01
+ a06 * b02
+ a05 * b03
+ a04 * b04
+ a03 * b05
+ a02 * b06
+ a01 * b07
+ a00 * b08
c09 = c09 * (19 / 2 ^ 255)
+ a09 * b00
+ a08 * b01
+ a07 * b02
+ a06 * b03
+ a05 * b04
+ a04 * b05
+ a03 * b06
+ a02 * b07
+ a01 * b08
+ a00 * b09
c10 = c10 * (19 / 2 ^ 255)
+ a10 * b00
+ a09 * b01
+ a08 * b02
+ a07 * b03
+ a06 * b04
+ a05 * b05
+ a04 * b06
+ a03 * b07
+ a02 * b08
+ a01 * b09
+ a00 * b10
c11 = a11 * b00
+ a10 * b01
+ a09 * b02
+ a08 * b03
+ a07 * b04
+ a06 * b05
+ a05 * b06
+ a04 * b07
+ a03 * b08
+ a02 * b09
+ a01 * b10
+ a00 * b11
-- Carry and reduce.
a10 = c10 + 3 * 2 ^ 285 - 3 * 2 ^ 285 c11 = c11 + a10
a11 = c11 + 3 * 2 ^ 306 - 3 * 2 ^ 306 c00 = c00 + 19 / 2 ^ 255 * a11
a00 = c00 + 3 * 2 ^ 73 - 3 * 2 ^ 73 c01 = c01 + a00
a01 = c01 + 3 * 2 ^ 94 - 3 * 2 ^ 94 c02 = c02 + a01
a02 = c02 + 3 * 2 ^ 115 - 3 * 2 ^ 115 c03 = c03 + a02
a03 = c03 + 3 * 2 ^ 136 - 3 * 2 ^ 136 c04 = c04 + a03
a04 = c04 + 3 * 2 ^ 158 - 3 * 2 ^ 158 c05 = c05 + a04
a05 = c05 + 3 * 2 ^ 179 - 3 * 2 ^ 179 c06 = c06 + a05
a06 = c06 + 3 * 2 ^ 200 - 3 * 2 ^ 200 c07 = c07 + a06
a07 = c07 + 3 * 2 ^ 221 - 3 * 2 ^ 221 c08 = c08 + a07
a08 = c08 + 3 * 2 ^ 243 - 3 * 2 ^ 243 c09 = c09 + a08
a09 = c09 + 3 * 2 ^ 264 - 3 * 2 ^ 264 c10 = c10 - a10 + a09
a10 = c10 + 3 * 2 ^ 285 - 3 * 2 ^ 285 c11 = c11 - a11 + a10
a11 = c11 + 3 * 2 ^ 306 - 3 * 2 ^ 306
return {
c00 - a00 + 19 / 2 ^ 255 * a11,
c01 - a01,
c02 - a02,
c03 - a03,
c04 - a04,
c05 - a05,
c06 - a06,
c07 - a07,
c08 - a08,
c09 - a09,
c10 - a10,
c11 - a11,
}
end
--- Squares an element.
--
-- @tparam fp2 a
-- @treturn fp1 c ≡ a² (mod p).
--
local function square(a)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local d00, d01, d02, d03, d04, d05, d06, d07, d08, d09, d10
local c00, c01, c02, c03, c04, c05, c06, c07, c08, c09, c10, c11
-- Compute 2a.
d00 = a00 + a00
d01 = a01 + a01
d02 = a02 + a02
d03 = a03 + a03
d04 = a04 + a04
d05 = a05 + a05
d06 = a06 + a06
d07 = a07 + a07
d08 = a08 + a08
d09 = a09 + a09
d10 = a10 + a10
-- Multiply high half into c00..c11.
c00 = a11 * d01
+ a10 * d02
+ a09 * d03
+ a08 * d04
+ a07 * d05
+ a06 * a06
c01 = a11 * d02
+ a10 * d03
+ a09 * d04
+ a08 * d05
+ a07 * d06
c02 = a11 * d03
+ a10 * d04
+ a09 * d05
+ a08 * d06
+ a07 * a07
c03 = a11 * d04
+ a10 * d05
+ a09 * d06
+ a08 * d07
c04 = a11 * d05
+ a10 * d06
+ a09 * d07
+ a08 * a08
c05 = a11 * d06
+ a10 * d07
+ a09 * d08
c06 = a11 * d07
+ a10 * d08
+ a09 * a09
c07 = a11 * d08
+ a10 * d09
c08 = a11 * d09
+ a10 * a10
c09 = a11 * d10
c10 = a11 * a11
-- Multiply low half with reduction into c00..c11.
c00 = c00 * (19 / 2 ^ 255)
+ a00 * a00
c01 = c01 * (19 / 2 ^ 255)
+ a01 * d00
c02 = c02 * (19 / 2 ^ 255)
+ a02 * d00
+ a01 * a01
c03 = c03 * (19 / 2 ^ 255)
+ a03 * d00
+ a02 * d01
c04 = c04 * (19 / 2 ^ 255)
+ a04 * d00
+ a03 * d01
+ a02 * a02
c05 = c05 * (19 / 2 ^ 255)
+ a05 * d00
+ a04 * d01
+ a03 * d02
c06 = c06 * (19 / 2 ^ 255)
+ a06 * d00
+ a05 * d01
+ a04 * d02
+ a03 * a03
c07 = c07 * (19 / 2 ^ 255)
+ a07 * d00
+ a06 * d01
+ a05 * d02
+ a04 * d03
c08 = c08 * (19 / 2 ^ 255)
+ a08 * d00
+ a07 * d01
+ a06 * d02
+ a05 * d03
+ a04 * a04
c09 = c09 * (19 / 2 ^ 255)
+ a09 * d00
+ a08 * d01
+ a07 * d02
+ a06 * d03
+ a05 * d04
c10 = c10 * (19 / 2 ^ 255)
+ a10 * d00
+ a09 * d01
+ a08 * d02
+ a07 * d03
+ a06 * d04
+ a05 * a05
c11 = a11 * d00
+ a10 * d01
+ a09 * d02
+ a08 * d03
+ a07 * d04
+ a06 * d05
-- Carry and reduce.
a10 = c10 + 3 * 2 ^ 285 - 3 * 2 ^ 285 c11 = c11 + a10
a11 = c11 + 3 * 2 ^ 306 - 3 * 2 ^ 306 c00 = c00 + 19 / 2 ^ 255 * a11
a00 = c00 + 3 * 2 ^ 73 - 3 * 2 ^ 73 c01 = c01 + a00
a01 = c01 + 3 * 2 ^ 94 - 3 * 2 ^ 94 c02 = c02 + a01
a02 = c02 + 3 * 2 ^ 115 - 3 * 2 ^ 115 c03 = c03 + a02
a03 = c03 + 3 * 2 ^ 136 - 3 * 2 ^ 136 c04 = c04 + a03
a04 = c04 + 3 * 2 ^ 158 - 3 * 2 ^ 158 c05 = c05 + a04
a05 = c05 + 3 * 2 ^ 179 - 3 * 2 ^ 179 c06 = c06 + a05
a06 = c06 + 3 * 2 ^ 200 - 3 * 2 ^ 200 c07 = c07 + a06
a07 = c07 + 3 * 2 ^ 221 - 3 * 2 ^ 221 c08 = c08 + a07
a08 = c08 + 3 * 2 ^ 243 - 3 * 2 ^ 243 c09 = c09 + a08
a09 = c09 + 3 * 2 ^ 264 - 3 * 2 ^ 264 c10 = c10 - a10 + a09
a10 = c10 + 3 * 2 ^ 285 - 3 * 2 ^ 285 c11 = c11 - a11 + a10
a11 = c11 + 3 * 2 ^ 306 - 3 * 2 ^ 306
return {
c00 - a00 + 19 / 2 ^ 255 * a11,
c01 - a01,
c02 - a02,
c03 - a03,
c04 - a04,
c05 - a05,
c06 - a06,
c07 - a07,
c08 - a08,
c09 - a09,
c10 - a10,
c11 - a11,
}
end
--- Multiplies an element by a number.
--
-- @tparam fp2 a
-- @tparam number k A number k in [0..2²²).
-- @treturn fp1 c ≡ a ✕ k (mod p).
--
local function kmul(a, k)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local c00, c01, c02, c03, c04, c05, c06, c07, c08, c09, c10, c11
-- TODO Range check.
a00 = a00 * k
a01 = a01 * k
a02 = a02 * k
a03 = a03 * k
a04 = a04 * k
a05 = a05 * k
a06 = a06 * k
a07 = a07 * k
a08 = a08 * k
a09 = a09 * k
a10 = a10 * k
a11 = a11 * k
c11 = a11 + 3 * 2 ^ 306 - 3 * 2 ^ 306 a00 = a00 + 19 / 2 ^ 255 * c11
c00 = a00 + 3 * 2 ^ 73 - 3 * 2 ^ 73 a01 = a01 + c00
c01 = a01 + 3 * 2 ^ 94 - 3 * 2 ^ 94 a02 = a02 + c01
c02 = a02 + 3 * 2 ^ 115 - 3 * 2 ^ 115 a03 = a03 + c02
c03 = a03 + 3 * 2 ^ 136 - 3 * 2 ^ 136 a04 = a04 + c03
c04 = a04 + 3 * 2 ^ 158 - 3 * 2 ^ 158 a05 = a05 + c04
c05 = a05 + 3 * 2 ^ 179 - 3 * 2 ^ 179 a06 = a06 + c05
c06 = a06 + 3 * 2 ^ 200 - 3 * 2 ^ 200 a07 = a07 + c06
c07 = a07 + 3 * 2 ^ 221 - 3 * 2 ^ 221 a08 = a08 + c07
c08 = a08 + 3 * 2 ^ 243 - 3 * 2 ^ 243 a09 = a09 + c08
c09 = a09 + 3 * 2 ^ 264 - 3 * 2 ^ 264 a10 = a10 + c09
c10 = a10 + 3 * 2 ^ 285 - 3 * 2 ^ 285 a11 = a11 - c11 + c10
c11 = a11 + 3 * 2 ^ 306 - 3 * 2 ^ 306
return {
a00 - c00 + 19 / 2 ^ 255 * c11,
a01 - c01,
a02 - c02,
a03 - c03,
a04 - c04,
a05 - c05,
a06 - c06,
a07 - c07,
a08 - c08,
a09 - c09,
a10 - c10,
a11 - c11
}
end
--- Squares an element n times.
--
-- @tparam fp2 a
-- @tparam number n A positive integer.
-- @treturn fp1 c ≡ a ^ 2 ^ n (mod p).
--
local function nsquare(a, n)
for _ = 1, n do a = square(a) end
return a
end
--- Computes the inverse of an element.
--
-- Computation of the inverse requires 11 multiplications and 252 squarings.
--
-- @tparam fp2 a
-- @treturn[1] fp1 c ≡ a⁻¹ (mod p), if a ≠ 0.
-- @treturn[2] fp1 c ≡ 0 (mod p), if a = 0.
--
local function invert(a)
local a2 = square(a)
local a9 = mul(a, nsquare(a2, 2))
local a11 = mul(a9, a2)
local x5 = mul(square(a11), a9)
local x10 = mul(nsquare(x5, 5), x5)
local x20 = mul(nsquare(x10, 10), x10)
local x40 = mul(nsquare(x20, 20), x20)
local x50 = mul(nsquare(x40, 10), x10)
local x100 = mul(nsquare(x50, 50), x50)
local x200 = mul(nsquare(x100, 100), x100)
local x250 = mul(nsquare(x200, 50), x50)
return mul(nsquare(x250, 5), a11)
end
--- Returns an element x that satisfies v * x² = u.
--
-- Note that when v = 0, the returned element can take any value.
--
-- @tparam fp2 u
-- @tparam fp2 v
-- @treturn[1] fp1 x.
-- @treturn[2] nil if there is no solution.
--
local function sqrtDiv(u, v)
u = carry(u)
local v2 = square(v)
local v3 = mul(v, v2)
local v6 = square(v3)
local v7 = mul(v, v6)
local uv7 = mul(u, v7)
local x2 = mul(square(uv7), uv7)
local x4 = mul(nsquare(x2, 2), x2)
local x8 = mul(nsquare(x4, 4), x4)
local x16 = mul(nsquare(x8, 8), x8)
local x18 = mul(nsquare(x16, 2), x2)
local x32 = mul(nsquare(x16, 16), x16)
local x50 = mul(nsquare(x32, 18), x18)
local x100 = mul(nsquare(x50, 50), x50)
local x200 = mul(nsquare(x100, 100), x100)
local x250 = mul(nsquare(x200, 50), x50)
local pr = mul(nsquare(x250, 2), uv7)
local uv3 = mul(u, v3)
local b = mul(uv3, pr)
local b2 = square(b)
local vb2 = mul(v, b2)
if not eq(vb2, u) then
-- Found sqrt(-u/v), multiply by i.
b = mul(b, I)
b2 = square(b)
vb2 = mul(v, b2)
end
if eq(vb2, u) then
return b
else
return nil
end
end
--- Encodes an element in little-endian.
--
-- @tparam fp2 a
-- @treturn string A 32-byte string. Always represents the canonical element.
--
local function encode(a)
a = canonicalize(a)
local a00, a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11 = unpack(a)
local bytes = {}
local acc = a00
local function putBytes(n)
for _ = 1, n do
local byte = acc % 256
bytes[#bytes + 1] = byte
acc = (acc - byte) / 256
end
end
putBytes(2) acc = acc + a01 / 2 ^ 16
putBytes(3) acc = acc + a02 / 2 ^ 40
putBytes(3) acc = acc + a03 / 2 ^ 64
putBytes(2) acc = acc + a04 / 2 ^ 80
putBytes(3) acc = acc + a05 / 2 ^ 104
putBytes(3) acc = acc + a06 / 2 ^ 128
putBytes(2) acc = acc + a07 / 2 ^ 144
putBytes(3) acc = acc + a08 / 2 ^ 168
putBytes(3) acc = acc + a09 / 2 ^ 192
putBytes(2) acc = acc + a10 / 2 ^ 208
putBytes(3) acc = acc + a11 / 2 ^ 232
putBytes(3)
return string.char(unpack(bytes))
end
--- Decodes an element in little-endian.
--
-- @tparam string b A 32-byte string. The most-significant bit is discarded.
-- @treturn fp1 The decoded element. May not be canonical.
--
local function decode(b)
local w00, w01, w02, w03, w04, w05, w06, w07, w08, w09, w10, w11 =
("