--- Point arithmetic on the Edwards25519 Edwards curve. -- -- :::note Internal Module -- This module is meant for internal use within the library. Its API is unstable -- and subject to change without major version bumps. -- ::: -- --
-- -- @module[kind=internal] internal.edwards25519 -- local fp = require "ccryptolib.internal.fp" local unpack = unpack or table.unpack local D = fp.mul(fp.num(-121665), fp.invert(fp.num(121666))) local K = fp.kmul(D, 2) local O = {fp.num(0), fp.num(1), fp.num(1), fp.num(0)} local G = nil --- Doubles a point. -- -- @tparam point P1 The point to double. -- @treturn point Twice P1. -- local function double(P1) -- Unsoundness: fp.sub(g, e), and fp.sub(d, i) break fp.sub's contract since -- it doesn't accept an fp2. Although not ideal, in practice this doesn't -- matter since fp.carry handles the larger sum. local P1x, P1y, P1z = unpack(P1) local a = fp.square(P1x) local b = fp.square(P1y) local c = fp.square(P1z) local d = fp.add(c, c) local e = fp.add(a, b) local f = fp.add(P1x, P1y) local g = fp.square(f) local h = fp.carry(fp.sub(g, e)) local i = fp.sub(b, a) local j = fp.carry(fp.sub(d, i)) local P3x = fp.mul(h, j) local P3y = fp.mul(i, e) local P3z = fp.mul(j, i) local P3t = fp.mul(h, e) return {P3x, P3y, P3z, P3t} end --- Adds two points. -- -- @tparam point P1 The first summand point. -- @tparam niels N1 The second summand point, in Niels form. See @{niels}. -- @treturn point The sum. -- local function add(P1, N1) local P1x, P1y, P1z, P1t = unpack(P1) local N1p, N1m, N1z, N1t = unpack(N1) local a = fp.sub(P1y, P1x) local b = fp.mul(a, N1m) local c = fp.add(P1y, P1x) local d = fp.mul(c, N1p) local e = fp.mul(P1t, N1t) local f = fp.mul(P1z, N1z) local g = fp.sub(d, b) local h = fp.sub(f, e) local i = fp.add(f, e) local j = fp.add(d, b) local P3x = fp.mul(g, h) local P3y = fp.mul(i, j) local P3z = fp.mul(h, i) local P3t = fp.mul(g, j) return {P3x, P3y, P3z, P3t} end local function sub(P1, N1) local P1x, P1y, P1z, P1t = unpack(P1) local N1p, N1m, N1z, N1t = unpack(N1) local a = fp.sub(P1y, P1x) local b = fp.mul(a, N1p) local c = fp.add(P1y, P1x) local d = fp.mul(c, N1m) local e = fp.mul(P1t, N1t) local f = fp.mul(P1z, N1z) local g = fp.sub(d, b) local h = fp.add(f, e) local i = fp.sub(f, e) local j = fp.add(d, b) local P3x = fp.mul(g, h) local P3y = fp.mul(i, j) local P3z = fp.mul(h, i) local P3t = fp.mul(g, j) return {P3x, P3y, P3z, P3t} end --- Computes the Niels representation of a point. -- -- @tparam point P1 -- @treturn niels P1's Niels representation. -- local function niels(P1) local P1x, P1y, P1z, P1t = unpack(P1) local N3p = fp.add(P1y, P1x) local N3m = fp.sub(P1y, P1x) local N3z = fp.add(P1z, P1z) local N3t = fp.mul(P1t, K) return {N3p, N3m, N3z, N3t} end local function scale(P1) local P1x, P1y, P1z = unpack(P1) local zInv = fp.invert(P1z) local P3x = fp.mul(P1x, zInv) local P3y = fp.mul(P1y, zInv) local P3z = fp.num(1) local P3t = fp.mul(P3x, P3y) return {P3x, P3y, P3z, P3t} end --- Encodes a point. -- -- @tparam point P1 The scaled point to encode. -- @treturn string The 32-byte encoded point. -- local function encode(P1) P1 = scale(P1) local P1x, P1y = unpack(P1) local y = fp.encode(P1y) local xBit = fp.canonicalize(P1x)[1] % 2 return y:sub(1, -2) .. string.char(y:byte(-1) + xBit * 128) end --- Decodes a point. -- -- @tparam string str A 32-byte encoded point. -- @treturn[1] point The decoded point. -- @treturn[2] nil If the string did not represent a valid encoded point. -- local function decode(str) local P3y = fp.decode(str) local a = fp.square(P3y) local b = fp.sub(a, fp.num(1)) local c = fp.mul(a, D) local d = fp.add(c, fp.num(1)) local P3x = fp.sqrtDiv(b, d) if not P3x then return nil end local xBit = fp.canonicalize(P3x)[1] % 2 if xBit ~= bit32.extract(str:byte(-1), 7) then P3x = fp.carry(fp.sub(fp.P, P3x)) end local P3z = fp.num(1) local P3t = fp.mul(P3x, P3y) return {P3x, P3y, P3z, P3t} end G = decode("Xfffffffffffffffffffffffffffffff") local function signedRadixW(bits, w) -- TODO Find a more elegant way of doing this. local wPow = 2 ^ w local wPowh = wPow / 2 local out = {} local acc = 0 local mul = 1 for i = 1, #bits do acc = acc + bits[i] * mul mul = mul * 2 while i == #bits and acc > 0 or mul > wPow do local rem = acc % wPow if rem >= wPowh then rem = rem - wPow end acc = (acc - rem) / wPow mul = mul / wPow out[#out + 1] = rem end end return out end local function radixWTable(P, w) local out = {} for i = 1, 255 / w do local row = {niels(P)} for j = 2, 2 ^ w / 2 do P = add(P, row[1]) row[j] = niels(P) end out[i] = row P = double(P) end return out end local G_W = 5 local G_TABLE = radixWTable(G, G_W) local function WNAF(bits, w) -- TODO Find a more elegant way of doing this. local wPow = 2 ^ w local wPowh = wPow / 2 local out = {} local acc = 0 local mul = 1 for i = 1, #bits do acc = acc + bits[i] * mul mul = mul * 2 while i == #bits and acc > 0 or mul > wPow do if acc % 2 == 0 then acc = acc / 2 mul = mul / 2 out[#out + 1] = 0 else local rem = acc % wPow if rem >= wPowh then rem = rem - wPow end acc = acc - rem out[#out + 1] = rem end end end while out[#out] == 0 do out[#out] = nil end return out end local function WNAFTable(P, w) local dP = double(P) local out = {niels(P)} for i = 3, 2 ^ w, 2 do out[i] = niels(add(dP, out[i - 2])) end return out end --- Performs a scalar multiplication by the base point G. -- -- @tparam {number...} bits The scalar multiplier, in little-endian bits. -- @treturn point The product. -- local function mulG(bits) local sw = signedRadixW(bits, G_W) local R = O for i = 1, #sw do local b = sw[i] if b > 0 then R = add(R, G_TABLE[i][b]) elseif b < 0 then R = sub(R, G_TABLE[i][-b]) end end return R end --- Performs a scalar multiplication operation. -- -- @tparam point P The base point. -- @tparam {number...} bits The scalar multiplier, in little-endian bits. -- @treturn point The product. -- local function mul(P, bits) local naf = WNAF(bits, 5) local tbl = WNAFTable(P, 5) local R = O for i = #naf, 1, -1 do local b = naf[i] if b == 0 then R = double(R) elseif b > 0 then R = add(R, tbl[b]) else R = sub(R, tbl[-b]) end end return R end return { double = double, add = add, niels = niels, encode = encode, decode = decode, mulG = mulG, mul = mul, }