ccryptolib/x25519c.lua
2022-03-04 13:19:51 -03:00

95 lines
2.2 KiB
Lua

local expect = require "cc.expect".expect
local fp = require "ccryptolib.internal.fp"
local fq = require "ccryptolib.internal.fq"
local x25519 = require "ccryptolib.internal.x25519"
local maddq = require "ccryptolib.internal.maddq"
local random = require "ccryptolib.random"
local ORDER = 4
--- The inverse of 8 modulo q (in montgomery form).
local INV8Q = {
5110253,
3039345,
2503500,
11779568,
15416472,
16766550,
16777215,
16777215,
16777215,
16777215,
4095,
}
local function ladder8(dx, bits)
local x1 = fp.num(1)
local z1 = fp.num(0)
-- Compute a randomization factor for randomized projective coordinates.
-- Biased but good enough.
local rf = fp.decode(random.random(32))
local x2 = fp.mul(rf, dx)
local z2 = rf
-- Standard ladder.
for i = #bits, 1, -1 do
if bits[i] == 0 then
x1, z1, x2, z2 = x25519.step(dx, x1, z1, x2, z2)
else
x2, z2, x1, z1 = x25519.step(dx, x2, z2, x1, z1)
end
end
-- Multiply by 8 (double 3 times).
for _ = 1, 3 do
x1, z1 = x25519.double(x1, z1)
end
return fp.mul(x1, fp.invert(z1))
end
local mod = {}
function mod.new(sk)
expect(1, sk, "string")
assert(#sk == 32, "secret key length must be 32")
return maddq.new(fq.decodeClamped(sk), ORDER)
end
function mod.encode(sks)
return maddq.encode(sks)
end
function mod.decode(str)
expect(1, str, "string")
assert(#str == 128, "encoded sks length must be 128")
return maddq.decode(str)
end
function mod.remask(sks)
return maddq.remask(sks)
end
function mod.exchange(sks, pk, mc)
expect(2, pk, "string")
assert(#pk == 32, "public key length must be 32")
expect(3, mc, "string")
assert(#mc == 32, "multiplier length must be 32")
-- Reduce secret key using the multiplier.
local skmc = maddq.unwrap(maddq.mul(sks, fq.decodeClamped(mc)))
-- Get bits.
-- We have our exponent modulo q. We also know that its value is 0 modulo 8.
-- Use the Chinese Remainder Theorem to find its value modulo 8q.
local bits = fq.bits(fq.mul(skmc, INV8Q))
return fp.encode(ladder8(fp.decode(pk), bits))
end
return mod