ccryptolib/ed25519.lua
Miguel Oliveira 54b821c091
Give up on masking for now
X25519c can be attacked by replying several times with invalid data.
This is hard to defend against in the API level without denying service
and using some hard-to-understand semantics.

Masked primitives are gone for now, some countermeasures have been moved
into their respective "regular" impls. I don't think that it's worth it
to care that much about side channels in CC. I haven't seen or managed
to mount any practical attacks myself. The further move away from Cobalt
will probably make them even harder to mount.
2022-03-05 12:03:08 -03:00

311 lines
7.8 KiB
Lua

--- The Ed25519 digital signature scheme.
--
-- @module ed25519
--
local expect = require "cc.expect".expect
local fp = require "ccryptolib.internal.fp"
local fq = require "ccryptolib.internal.fq"
local sha512 = require "ccryptolib.internal.sha512"
local random = require "ccryptolib.random"
local unpack = unpack or table.unpack
local D = fp.mul(fp.num(-121665), fp.invert(fp.num(121666)))
local K = fp.kmul(D, 2)
local O = {fp.num(0), fp.num(1), fp.num(1), fp.num(0)}
local G = nil
local function double(P1)
local P1x, P1y, P1z = unpack(P1)
local a = fp.square(P1x)
local b = fp.square(P1y)
local c = fp.square(P1z)
local d = fp.kmul(c, 2)
local e = fp.add(a, b)
local f = fp.add(P1x, P1y)
local g = fp.square(f)
local h = fp.sub(g, e)
local i = fp.sub(b, a)
local j = fp.sub(d, i)
local P3x = fp.mul(h, j)
local P3y = fp.mul(i, e)
local P3z = fp.mul(j, i)
local P3t = fp.mul(h, e)
return {P3x, P3y, P3z, P3t}
end
local function add(P1, N1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N1p, N1m, N1z, N1t = unpack(N1)
local a = fp.sub(P1y, P1x)
local b = fp.mul(a, N1m)
local c = fp.add(P1y, P1x)
local d = fp.mul(c, N1p)
local e = fp.mul(P1t, N1t)
local f = fp.mul(P1z, N1z)
local g = fp.sub(d, b)
local h = fp.sub(f, e)
local i = fp.add(f, e)
local j = fp.add(d, b)
local P3x = fp.mul(g, h)
local P3y = fp.mul(i, j)
local P3z = fp.mul(h, i)
local P3t = fp.mul(g, j)
return {P3x, P3y, P3z, P3t}
end
local function sub(P1, N1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N1p, N1m, N1z, N1t = unpack(N1)
local a = fp.sub(P1y, P1x)
local b = fp.mul(a, N1p)
local c = fp.add(P1y, P1x)
local d = fp.mul(c, N1m)
local e = fp.mul(P1t, N1t)
local f = fp.mul(P1z, N1z)
local g = fp.sub(d, b)
local h = fp.add(f, e)
local i = fp.sub(f, e)
local j = fp.add(d, b)
local P3x = fp.mul(g, h)
local P3y = fp.mul(i, j)
local P3z = fp.mul(h, i)
local P3t = fp.mul(g, j)
return {P3x, P3y, P3z, P3t}
end
local function niels(P1)
local P1x, P1y, P1z, P1t = unpack(P1)
local N3p = fp.add(P1y, P1x)
local N3m = fp.sub(P1y, P1x)
local N3z = fp.add(P1z, P1z)
local N3t = fp.mul(P1t, K)
return {N3p, N3m, N3z, N3t}
end
local function scale(P1)
local P1x, P1y, P1z = unpack(P1)
local zInv = fp.invert(P1z)
local P3x = fp.mul(P1x, zInv)
local P3y = fp.mul(P1y, zInv)
local P3z = fp.num(1)
local P3t = fp.mul(P3x, P3y)
return {P3x, P3y, P3z, P3t}
end
local function encode(P1)
local P1x, P1y = unpack(P1)
local y = fp.encode(P1y)
local xBit = fp.canonicalize(P1x)[1] % 2
return y:sub(1, -2) .. string.char(y:byte(-1) + xBit * 128)
end
local function decode(str)
local P3y = fp.decode(str)
local a = fp.square(P3y)
local b = fp.sub(a, fp.num(1))
local c = fp.mul(a, D)
local d = fp.add(c, fp.num(1))
local P3x = fp.sqrtDiv(b, d)
if not P3x then return nil end
local xBit = fp.canonicalize(P3x)[1] % 2
if xBit ~= bit32.extract(str:byte(-1), 7) then
P3x = fp.neg(P3x)
P3x = fp.carry(P3x)
end
local P3z = fp.num(1)
local P3t = fp.mul(P3x, P3y)
return {P3x, P3y, P3z, P3t}
end
G = decode("Xfffffffffffffffffffffffffffffff")
local function signedRadixW(bits, w)
-- TODO Find a more elegant way of doing this.
local wPow = 2 ^ w
local wPowh = wPow / 2
local out = {}
local acc = 0
local mul = 1
for i = 1, #bits do
acc = acc + bits[i] * mul
mul = mul * 2
while i == #bits and acc > 0 or mul > wPow do
local rem = acc % wPow
if rem >= wPowh then rem = rem - wPow end
acc = (acc - rem) / wPow
mul = mul / wPow
out[#out + 1] = rem
end
end
return out
end
local function radixWTable(P, w)
local out = {}
for i = 1, 255 / w do
local row = {niels(P)}
for j = 2, 2 ^ w / 2 do
P = add(P, row[1])
row[j] = niels(P)
end
out[i] = row
P = double(P)
end
return out
end
local G_W = 5
local G_TABLE = radixWTable(G, G_W)
local function WNAF(bits, w)
-- TODO Find a more elegant way of doing this.
local wPow = 2 ^ w
local wPowh = wPow / 2
local out = {}
local acc = 0
local mul = 1
for i = 1, #bits do
acc = acc + bits[i] * mul
mul = mul * 2
while i == #bits and acc > 0 or mul > wPow do
if acc % 2 == 0 then
acc = acc / 2
mul = mul / 2
out[#out + 1] = 0
else
local rem = acc % wPow
if rem >= wPowh then rem = rem - wPow end
acc = acc - rem
out[#out + 1] = rem
end
end
end
while out[#out] == 0 do out[#out] = nil end
return out
end
local function WNAFTable(P, w)
local dP = double(P)
local out = {niels(P)}
for i = 3, 2 ^ w, 2 do
out[i] = niels(add(dP, out[i - 2]))
end
return out
end
local function mulG(bits)
local sw = signedRadixW(bits, G_W)
local R = O
for i = 1, #sw do
local b = sw[i]
if b > 0 then
R = add(R, G_TABLE[i][b])
elseif b < 0 then
R = sub(R, G_TABLE[i][-b])
end
end
return R
end
local function mul(P, bits)
local naf = WNAF(bits, 5)
local tbl = WNAFTable(P, 5)
local R = O
for i = #naf, 1, -1 do
local b = naf[i]
if b == 0 then
R = double(R)
elseif b > 0 then
R = add(R, tbl[b])
else
R = sub(R, tbl[-b])
end
end
return R
end
local mod = {}
--- Computes a public key from a secret key.
--
-- @tparam string sk A random 32-byte secret key.
-- @treturn string The matching 32-byte public key.
--
function mod.publicKey(sk)
expect(1, sk, "string")
assert(#sk == 32, "secret key length must be 32")
local h = sha512.digest(sk)
local x = fq.decodeClamped(h:sub(1, 32))
return encode(scale(mulG(fq.bits(x))))
end
--- Signs a message.
--
-- @tparam string sk The signer's secret key.
-- @tparam string pk The signer's public key.
-- @tparam string msg The message to be signed.
-- @treturn string The 64-byte signature on the message.
--
function mod.sign(sk, pk, msg)
expect(1, sk, "string")
assert(#sk == 32, "secret key length must be 32")
expect(2, pk, "string")
assert(#pk == 32, "public key length must be 32")
expect(3, msg, "string")
-- Secret key.
local h = sha512.digest(sk)
local x = fq.decodeClamped(h:sub(1, 32))
-- Commitment.
local k = fq.decodeWide(random.random(64))
local r = mulG(fq.bits(k))
local rStr = encode(scale(r))
-- Challenge.
local e = fq.decodeWide(sha512.digest(rStr .. pk .. msg))
-- Response.
local m = fq.decodeWide(random.random(64))
local s = fq.add(fq.add(k, fq.neg(fq.mul(fq.add(x, m), e))), fq.mul(m, e))
local sStr = fq.encode(s)
return rStr .. sStr
end
--- Verifies a signature on a message.
--
-- @tparam string pk The signer's public key.
-- @tparam string msg The signed message.
-- @tparam string sig The signature.
-- @treturn boolean Whether the signature is valid or not.
--
function mod.verify(pk, msg, sig)
expect(1, pk, "string")
assert(#pk == 32, "public key length must be 32")
expect(2, msg, "string")
expect(3, sig, "string")
assert(#sig == 64, "signature length must be 64")
local y = decode(pk)
if not y then return nil end
local rStr = sig:sub(1, 32)
local sStr = sig:sub(33)
local e = fq.decodeWide(sha512.digest(rStr .. pk .. msg))
local gs = mulG(fq.bits(fq.decode(sStr)))
local ye = mul(y, fq.bits(e))
local rv = add(gs, niels(ye))
return encode(scale(rv)) == rStr
end
return mod