283 lines
7.1 KiB
Lua
283 lines
7.1 KiB
Lua
--- Point arithmetic on the Edwards25519 Edwards curve.
|
|
--
|
|
-- :::note Internal Module
|
|
-- This module is meant for internal use within the library. Its API is unstable
|
|
-- and subject to change without major version bumps.
|
|
-- :::
|
|
--
|
|
-- <br />
|
|
--
|
|
-- @module[kind=internal] internal.edwards25519
|
|
--
|
|
|
|
local fp = require "ccryptolib.internal.fp"
|
|
|
|
local unpack = unpack or table.unpack
|
|
|
|
local D = fp.mul(fp.num(-121665), fp.invert(fp.num(121666)))
|
|
local K = fp.kmul(D, 2)
|
|
|
|
local O = {fp.num(0), fp.num(1), fp.num(1), fp.num(0)}
|
|
local G = nil
|
|
|
|
--- Doubles a point.
|
|
--
|
|
-- @tparam point P1 The point to double.
|
|
-- @treturn point Twice P1.
|
|
--
|
|
local function double(P1)
|
|
-- Unsoundness: fp.sub(g, e), and fp.sub(d, i) break fp.sub's contract since
|
|
-- it doesn't accept an fp2. Although not ideal, in practice this doesn't
|
|
-- matter since fp.carry handles the larger sum.
|
|
local P1x, P1y, P1z = unpack(P1)
|
|
local a = fp.square(P1x)
|
|
local b = fp.square(P1y)
|
|
local c = fp.square(P1z)
|
|
local d = fp.add(c, c)
|
|
local e = fp.add(a, b)
|
|
local f = fp.add(P1x, P1y)
|
|
local g = fp.square(f)
|
|
local h = fp.carry(fp.sub(g, e))
|
|
local i = fp.sub(b, a)
|
|
local j = fp.carry(fp.sub(d, i))
|
|
local P3x = fp.mul(h, j)
|
|
local P3y = fp.mul(i, e)
|
|
local P3z = fp.mul(j, i)
|
|
local P3t = fp.mul(h, e)
|
|
return {P3x, P3y, P3z, P3t}
|
|
end
|
|
|
|
--- Adds two points.
|
|
--
|
|
-- @tparam point P1 The first summand point.
|
|
-- @tparam niels N1 The second summand point, in Niels form. See @{niels}.
|
|
-- @treturn point The sum.
|
|
--
|
|
local function add(P1, N1)
|
|
local P1x, P1y, P1z, P1t = unpack(P1)
|
|
local N1p, N1m, N1z, N1t = unpack(N1)
|
|
local a = fp.sub(P1y, P1x)
|
|
local b = fp.mul(a, N1m)
|
|
local c = fp.add(P1y, P1x)
|
|
local d = fp.mul(c, N1p)
|
|
local e = fp.mul(P1t, N1t)
|
|
local f = fp.mul(P1z, N1z)
|
|
local g = fp.sub(d, b)
|
|
local h = fp.sub(f, e)
|
|
local i = fp.add(f, e)
|
|
local j = fp.add(d, b)
|
|
local P3x = fp.mul(g, h)
|
|
local P3y = fp.mul(i, j)
|
|
local P3z = fp.mul(h, i)
|
|
local P3t = fp.mul(g, j)
|
|
return {P3x, P3y, P3z, P3t}
|
|
end
|
|
|
|
local function sub(P1, N1)
|
|
local P1x, P1y, P1z, P1t = unpack(P1)
|
|
local N1p, N1m, N1z, N1t = unpack(N1)
|
|
local a = fp.sub(P1y, P1x)
|
|
local b = fp.mul(a, N1p)
|
|
local c = fp.add(P1y, P1x)
|
|
local d = fp.mul(c, N1m)
|
|
local e = fp.mul(P1t, N1t)
|
|
local f = fp.mul(P1z, N1z)
|
|
local g = fp.sub(d, b)
|
|
local h = fp.add(f, e)
|
|
local i = fp.sub(f, e)
|
|
local j = fp.add(d, b)
|
|
local P3x = fp.mul(g, h)
|
|
local P3y = fp.mul(i, j)
|
|
local P3z = fp.mul(h, i)
|
|
local P3t = fp.mul(g, j)
|
|
return {P3x, P3y, P3z, P3t}
|
|
end
|
|
|
|
--- Computes the Niels representation of a point.
|
|
--
|
|
-- @tparam point P1
|
|
-- @treturn niels P1's Niels representation.
|
|
--
|
|
local function niels(P1)
|
|
local P1x, P1y, P1z, P1t = unpack(P1)
|
|
local N3p = fp.add(P1y, P1x)
|
|
local N3m = fp.sub(P1y, P1x)
|
|
local N3z = fp.add(P1z, P1z)
|
|
local N3t = fp.mul(P1t, K)
|
|
return {N3p, N3m, N3z, N3t}
|
|
end
|
|
|
|
local function scale(P1)
|
|
local P1x, P1y, P1z = unpack(P1)
|
|
local zInv = fp.invert(P1z)
|
|
local P3x = fp.mul(P1x, zInv)
|
|
local P3y = fp.mul(P1y, zInv)
|
|
local P3z = fp.num(1)
|
|
local P3t = fp.mul(P3x, P3y)
|
|
return {P3x, P3y, P3z, P3t}
|
|
end
|
|
|
|
--- Encodes a point.
|
|
--
|
|
-- @tparam point P1 The scaled point to encode.
|
|
-- @treturn string The 32-byte encoded point.
|
|
--
|
|
local function encode(P1)
|
|
P1 = scale(P1)
|
|
local P1x, P1y = unpack(P1)
|
|
local y = fp.encode(P1y)
|
|
local xBit = fp.canonicalize(P1x)[1] % 2
|
|
return y:sub(1, -2) .. string.char(y:byte(-1) + xBit * 128)
|
|
end
|
|
|
|
--- Decodes a point.
|
|
--
|
|
-- @tparam string str A 32-byte encoded point.
|
|
-- @treturn[1] point The decoded point.
|
|
-- @treturn[2] nil If the string did not represent a valid encoded point.
|
|
--
|
|
local function decode(str)
|
|
local P3y = fp.decode(str)
|
|
local a = fp.square(P3y)
|
|
local b = fp.sub(a, fp.num(1))
|
|
local c = fp.mul(a, D)
|
|
local d = fp.add(c, fp.num(1))
|
|
local P3x = fp.sqrtDiv(b, d)
|
|
if not P3x then return nil end
|
|
local xBit = fp.canonicalize(P3x)[1] % 2
|
|
if xBit ~= bit32.extract(str:byte(-1), 7) then
|
|
P3x = fp.carry(fp.sub(fp.P, P3x))
|
|
end
|
|
local P3z = fp.num(1)
|
|
local P3t = fp.mul(P3x, P3y)
|
|
return {P3x, P3y, P3z, P3t}
|
|
end
|
|
|
|
G = decode("Xfffffffffffffffffffffffffffffff")
|
|
|
|
local function signedRadixW(bits, w)
|
|
-- TODO Find a more elegant way of doing this.
|
|
local wPow = 2 ^ w
|
|
local wPowh = wPow / 2
|
|
local out = {}
|
|
local acc = 0
|
|
local mul = 1
|
|
for i = 1, #bits do
|
|
acc = acc + bits[i] * mul
|
|
mul = mul * 2
|
|
while i == #bits and acc > 0 or mul > wPow do
|
|
local rem = acc % wPow
|
|
if rem >= wPowh then rem = rem - wPow end
|
|
acc = (acc - rem) / wPow
|
|
mul = mul / wPow
|
|
out[#out + 1] = rem
|
|
end
|
|
end
|
|
return out
|
|
end
|
|
|
|
local function radixWTable(P, w)
|
|
local out = {}
|
|
for i = 1, 255 / w do
|
|
local row = {niels(P)}
|
|
for j = 2, 2 ^ w / 2 do
|
|
P = add(P, row[1])
|
|
row[j] = niels(P)
|
|
end
|
|
out[i] = row
|
|
P = double(P)
|
|
end
|
|
return out
|
|
end
|
|
|
|
local G_W = 5
|
|
local G_TABLE = radixWTable(G, G_W)
|
|
|
|
local function WNAF(bits, w)
|
|
-- TODO Find a more elegant way of doing this.
|
|
local wPow = 2 ^ w
|
|
local wPowh = wPow / 2
|
|
local out = {}
|
|
local acc = 0
|
|
local mul = 1
|
|
for i = 1, #bits do
|
|
acc = acc + bits[i] * mul
|
|
mul = mul * 2
|
|
while i == #bits and acc > 0 or mul > wPow do
|
|
if acc % 2 == 0 then
|
|
acc = acc / 2
|
|
mul = mul / 2
|
|
out[#out + 1] = 0
|
|
else
|
|
local rem = acc % wPow
|
|
if rem >= wPowh then rem = rem - wPow end
|
|
acc = acc - rem
|
|
out[#out + 1] = rem
|
|
end
|
|
end
|
|
end
|
|
while out[#out] == 0 do out[#out] = nil end
|
|
return out
|
|
end
|
|
|
|
local function WNAFTable(P, w)
|
|
local dP = double(P)
|
|
local out = {niels(P)}
|
|
for i = 3, 2 ^ w, 2 do
|
|
out[i] = niels(add(dP, out[i - 2]))
|
|
end
|
|
return out
|
|
end
|
|
|
|
--- Performs a scalar multiplication by the base point G.
|
|
--
|
|
-- @tparam {number...} bits The scalar multiplier, in little-endian bits.
|
|
-- @treturn point The product.
|
|
--
|
|
local function mulG(bits)
|
|
local sw = signedRadixW(bits, G_W)
|
|
local R = O
|
|
for i = 1, #sw do
|
|
local b = sw[i]
|
|
if b > 0 then
|
|
R = add(R, G_TABLE[i][b])
|
|
elseif b < 0 then
|
|
R = sub(R, G_TABLE[i][-b])
|
|
end
|
|
end
|
|
return R
|
|
end
|
|
|
|
--- Performs a scalar multiplication operation.
|
|
--
|
|
-- @tparam point P The base point.
|
|
-- @tparam {number...} bits The scalar multiplier, in little-endian bits.
|
|
-- @treturn point The product.
|
|
--
|
|
local function mul(P, bits)
|
|
local naf = WNAF(bits, 5)
|
|
local tbl = WNAFTable(P, 5)
|
|
local R = O
|
|
for i = #naf, 1, -1 do
|
|
local b = naf[i]
|
|
if b == 0 then
|
|
R = double(R)
|
|
elseif b > 0 then
|
|
R = add(R, tbl[b])
|
|
else
|
|
R = sub(R, tbl[-b])
|
|
end
|
|
end
|
|
return R
|
|
end
|
|
|
|
return {
|
|
double = double,
|
|
add = add,
|
|
niels = niels,
|
|
encode = encode,
|
|
decode = decode,
|
|
mulG = mulG,
|
|
mul = mul,
|
|
}
|